1 引言
随着电动汽车市场的日益扩大,齿轮箱的NVH问题受到越来越多的关注。齿轮系统产生的振动主要是由于齿轮啮合的动态激励。众多学者对该方向展开了探讨,例如张琛对汽车变速箱齿轮振动噪声问题做了系统的分析,林腾蛟等人对齿轮箱动态响应及辐射噪声做了数值仿真。
2 载荷条件
齿轮模型如图1所示,给定输入转速3600r/min,输出轴施加2000Nm的负载。通过计算得到齿轮啮合动态激励曲线,见图2、图3、图4。

图1 齿轮模型

图2 齿轮动态激励曲线(X方向)

图3 齿轮动态激励曲线(Y方向)

图4 齿轮动态激励曲线(Z方向)
3 有限元模型
箱体材料为ZL114A,弹性模量71GPa,泊松比0.33,密度2770kg/m3。前后箱体连接用共节点代替接触。在轴齿件质心位置创建质量单元代替轴齿件总成,并定义转动惯量。以质量点为主节点,四处轴承孔壁面上节点为从节点,建立RBE2单元。箱体模型采用一阶四面体网格,有限元模型如图5所示。计算采用默认单位制,t/mm/s/N/MPa。

图5 箱体有限元模型
3.1 模型验证
频响分析采用模态法,需先通过自由模态检验网格模型的正确性。自由模态计算结果如表1所示。
表1 自由模态频率值

3.2 边界定义
对电机结合面处螺栓孔施加固定约束,箱体两侧悬置施加固定约束。将齿轮动态激励施加在质量点上。设置模态阻尼比0.03,模态截断频率15000Hz。
4 结果与讨论
齿轮啮合频率计算公式为
f=nz/60
现已知主动齿轮齿数25,故啮合频率为1500Hz。箱体表面在啮合频率1500Hz、倍频(3000Hz、4500Hz)时的加速度云图如图6、图7、图8所示。振动强烈位置为箱体背面以及靠近出油口的两小块区域。后期可对该区域进行加强,以改善其振动特性。

图6 箱体表面振动加速度云图(1500Hz)

图7 箱体表面振动加速度云图(3000Hz)

图8 箱体表面振动加速度云图(4500Hz)
5 结论
借助HyperWorks仿真软件对齿轮箱进行频率响应分析,可知其振动特性。后期可在该工作基础上,结合边界元法,进行壳体辐射噪声分析。
本文来源于互联网,e-works本着传播知识、有益学习和研究的目的进行的转载,为网友免费提供,并以尽力标明作者与出处,如有著作权人或出版方提出异议,本站将立即删除。如果您对文章转载有任何疑问请告之我们,以便我们及时纠正。联系方式:editor@e-works.net.cn tel:027-87592219/20/21。